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By antiplanar deformation is meant the state of stress in an infinitely 
long cylinder subjected to the action of loading which is applied in the 
direction of the generators and which is constant along them. The elastie- 
plastic problem under the condition of antiBlanar deformation has already 
been considered in the works of Trefftz [II, Hult and McClintock 121, 
Neuber [31. Paper [l] gives an exact solution of the elastic-plastic prob- 
lem on the antiplanar deformation of an angle section with right-angle 
opening, and also of the analogous problem for % region exterior to a 
circular hole. The elastic-plastic problem for % half-plane with a sharp 
notch has been solved for small values of the loading parameter in [21. 
Neuber c31 considered a strip with two symmetric sharp notches, and, 
moreover, for an arbitrary single-valued relation between the stresses 
and this strains, the solution of the problem was reduced to a system of 
two ordinary differential equations and for a specially selected law the 
solution was obtain%d in closed form, 

Below, a treatment will be given of the solution in quadratures of 
the static elastic-plastic problem for the exterior of an arbitrary con- 
tour wholly enclosed by the plastic zone and loaded arbitrarily (Section 
2); an exact solution of the problem for the extertor of a contour con- 
sisting of segments of straight and curved lines in the case when the 
straight sections are free of stresses and the parts of the curved arcs, 
which are arbitrarily loaded. are wholly contained in the plastic zone 
(Section 4). 

T&e solutions of the probleas of Section 4 are based mainly on the 
solution of a certain nonlinear boundary value problem <Section 3). 
Throughout this article the Prandtl diagram has been taken as the rela- 
tion between the stresses and the strains. 
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1. General relations. The fields of displacements and stresses in the 

considered body are such that 

Were u, v1 w are the components of the displacement vector; oz. uy, 
Q T l 7 are the components of the stress tensor; x, y, t are 
C&tes’ian coordinates 

fYz 
(the z-axis is parallel to the generators). In the 

plastic region we have the relations [4,5] 

%c, aryz 
ax-t- ay --0 :equilibrium equation) if.21 

rxZa + wuzz = kP (yield condition) (1.3) 

aw - aw --co 312 G I- %Z ay (Hencky condition) (1.4) 

Here k = rI according to the Fluber-von Mlses condftion, and 
k = 271$/J 3 according to the Tres~a-Saint-Venant condition, and 78 is 

the yield value in pure shear. The stresses can be determined inde- 
pendently of the boundary of the plastic region. We represent the 
stresses in the form [51 

7 xz = k cos 0, ryz = k sin tt (1.51 

Here the function 8(x, y)‘ satisfies the condition 

a0 ae 
-sin0;i-,+cos6--0 

aY 
(1.6) 

The characteristics of Equation (1.6) are the family of straight 
lines y=- x cot 8 + c. 8 = con&, which coincide with the slip lines 
and are orthogonal to the vector T = vzL + ‘i? 

Renckf relation (1.4) it follows that I = 
ys at every point. From the 

const along the slip lines. 
Thus the stress ffeld in the plastic region is completely determined by 
the form of the boundary of the plastic region and by the boundary load- 
ing. On the boundary between the elastic and plastic regions we allow no 
discontinuity in the stresses or the displacement. 

In the elastic region the stresses and the displacement can be deter- 
mined [l] by means of one analytic function of a complex variable (I.I is 
the sheer modulus) 

w = Re f(z), -7.-- v = wxt + iryz = Irf (2) (2 = x + iy) (1.7) 
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2. 'Ihe elastic-plastic problem for BR arbitrary hole in an 
infinite plane in the case when the plastic region completely 
surrounds the hole. Let the sectionally smooth contour C of the hole 

be representable in the complex variable z by means of the parametric 

equations x = k(t), y = q(t), where t(t) and q(t) are periodic, single 

valued functions with the same period T, having sectionally continuous 

derivatives (Fig. la). Applied to the contour there is a load TZn=k-r(t), 

where 7(t) is a sectionally continuous function and IT( d 1. The con- 

tour L of the plastic region con- 

tains all of the hole C. I3y 

Formula (1.5) on the basis of the 

boundary data we find that the 

stresses in the plastic region 

are 

along the line 

y - Tj (1) = - (5 - E (t), cot 8 

9 = tc (t) - p (t) (2.Q 

Here for simplicity the followin, 0 notation has been introduced 

z (t) = cos a (t), E’ (t) = sin P (t) VE’” (4 + q’2 (t) (2.2) 

The function 8 = e(t), given by the relation (2.1), is sectionally 

continuous. We require that the inverse function t = t(g) should be 

single-valued. 

We assume that every slip line intersects the contour L at one point, 

and, conversely, that from each point of the contour L it is possible to 

construct only one slip line proceeding from the boundary C of the body. 

It is easy to derive the relation connecting the function 0 with the 

coordinates of the point of the contour of the plastic region z = jzle’? 

in which the stress can be determined by means of Formula (2.1) 

(Fig. la) 

) 2 1 cos (cp - 0) = q (t) sin 8 + E (t) cos 8 (2.3) 

On the contour L of the boundary between the elastic and plastic 

regions we have, by virtue of Formulas (2.1) and (1.2), the condition 

for the continuity of the stresses 
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,I&/’ (2) = lce-‘e (2.4) 

We now change over to the parametric plane of the complex variable 

5 = F f’ (s), s = 0 (5) (2.5) 

By virtue of the boundary condition (2.4) and the previously mentioned 
assumption that there is a one-to-one relation between the contour L in 
the z-plane and the unit circle 5 = eiy in the c-plane, where y = - 0, 
and the elastic region is inside this circle (Fig. lb). 

The function w(c) may prove to be multi valued. When z - ~0, let 

f’ (4 = fo + f1lz + 0 (0, fo = p-’ bxz” - ~~l/3, fr = FI2np 

where -rXT, T a, are the stresses at an infinitely remote point, and F is 
the resultanc’vector of the forces applied to the boundary [6I. In order 
that the plastic region enclose the entire hole it is necessary that 

fo = 0, !I# 0 (2.6) 

The first of these conditions follows from the principle of maximum 

modulus, and the second from the principle of correspondence of bound- 
aries [7,81.; h t e conditions (2.6) are the conditions for the single- 
valuedness of the function z = ~(5) when lcl d 1. Moreover, the point 
5 = 0 is a first order pole since o(j) = fl/c + O(1) as 5 - 0. In general, 
the function 5 is not of one sheet. In particular, when f, = 0 the point 
5 = f0 is always a branch point of the function o(c). 

By (2.3), we obtain in the hodograph c-plane the following boundary 
value problem for t.he function o(c): 

Re 15~ (611 = P (7) for 6 = eiy 

p (7) = - ‘I [t’(- r)l sin y + E [t (- 711 COS 7 
(2.7) 

where p(y) is a known continuous and single-valued function, and 

b (5) = fl + 0 (0 for c-0 (2;8) 

From the Schwarz formula [7,9, lOI we obtain the solution of (2.7) and 

(2.8) 

P-9) 
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Taking the 1 imit 5 - e’y, we obtain the parametric 
boundary L separating the elastic and plastic regions 

equation of the 

an 

2 (y) = e-‘y 
[ P (Y) - fl + f \ p ‘4’(:@ ] 

o I-e 

‘Ihe integral in Formula (2,101 is to be understood in 
principal value. We note that after the determination of 

(2.10) 

the sense of the 
the boundary L 

it is necessary to check whether the assumptions made earlier are 
satisfied. 

In order that the solution of the problem in the Form (2.9) and (2.10) 
should exist, it is necessary that the function p(y) should satisfy the 
two conditions 

(1) I 2 CY) I S E” 0) + v2 0) (are 2 t-r) = tan-1 i)#) (2.11) 

(21 the function arg t(y) should be of one sign. 

It .should be noted that during the solution of the problem use has 
been made of the Prandtl diagram without an unloading section, which is 
the same as the indirect assumption that the work of the plastic deforma- 
tion is positive everywhere in the plastic region. Thus the solution of 
the problem is valid only for those loading paths for which the successive 
elastic-plastic boundaries contain the preceding ones, or at least come 
into contact on some sections. otherwise the shape of the boundary be- 

tween the elastic and plastic regions, as well as the overall solution 
will depend on the path of loading. For loading paths satisfying the 
above cond’itions. the limitations (2.11) applied to the function p(y) 
will be sufficient for the existence of the solution of the initial 
elastic-plastic problem. The remark concerning the paths of loading as 

well as the condition (2.11) apply to all subsequent SolUtiOnS of elastic- 

plastic problems. 

3. The auxiliary boundary value problem. 1. Let it be required 

to determine a function o(z), which is analytic in the whole half-plane 
Im z > 0, from the nonlinear boundary conditions on the real axis 

IU)(t)I=a(G (~EJ?, Re [(a (t) - ib (t)) W (t)] = 0 (E Eni) (3.1) 

where n(t), b(t), a(t) are almost everywhere continuous functions satis- 
fying the CSzl’der condition on the interval of continuity and at an in- 
finitely remote point (a + ib # 0); L = L, + L, + . . . + L,, where L, are 
the intervals - 0~ < aC c t < b, c m; and M is the manifold of points on 

the real axis lying outside L. 
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We will require at least integrability of the function o(z) at the 
end poitits of the intervals t = ak, t = b, as well as at the points of 
discontinuity of the coefficient a - ib(t = ck) and of the function 
a(t)(t = dk). 

We indicate the method of solution of the boundary value problem (3.1)) 
which is based on the reduction of it to a nonlinear Riemann boundary- 
value problem, solvable in closed form with ‘the aid of methods analogous 
to the classical method of solving linear boundary value problems de- 
veloped in the monographs of Muskhelishvili [91 and Gakhov [IO]. As re- 

gards the nonlinear boundary value problem and the related problems of 
nonlinear singular integral equations, they are the celebrated, chiefly 
qualitative investigations touching on the questions of existence and 
uniqueness of the solution. Some nonlinear problems, solved in closed 
form, were also treated in [II]. 

2. E3y canonical function of the nonlinear boundary value problem (3.1) 

will be denoted that sectionally holomorphic function X(z) with a line 

of discontinuity on the real axis which is the canonical function of the 

Riemann problem 

X+ (t) = G (t) X- (t), G(Q = - a(t)-ib(t) (3.2) 

1 (t E L) i 

a (t) + ib (~1 
(tEw 

Moreover near the points t = ck, the class of X(z) coincides with the 

given class of the functions o(z), and at the points ak and b, the func- 

tion X(z) is bounded. 

The canonical function thus determined for the problem (3.1) can be 

written in the form 19,101 

X (2) = fJ (2 - bk)-“ker (*), 
k=l 

is 

Let K = K1 t . . . + Kn be the index of the Riemann problem (3.2), which 

determined in the usual manner ( [lOI , p. 436). 

‘Ihe boundary condition (3.1) can be rewritten in the following way: 

w (t) w (t) = a2 (t) (t E L), (a - ib) 0 (t) + (a + ib) 0 (t) = O(t E W (3.4) 

We introduce the function 0(z), which is analytic in the whole z- 

plane except, perhaps, on the real axis: 



G.P. Cherepanov 

Q (4 = { 
0(2)/X+(z) for Imz>O 

0(2)/X-(z) for Imz<O 
(3.5) 

With the aid of Formulas (3.5) and (3.21, the boundary condition 
(3.4) can be written in the form 

W(D- = a2 (t) Xm2 (t) (t E I;), w--w=0 @EM; (3*6) 

'Ihe function Q,(t) clearly has zero order at the 

- K at infinity. 

points C, and order 

Thus the problem (3.1) reduces to the nonlinear Riemann problem: to 

determine the function O(z) analytic outside the cut L under the con- 

dition 

(D+w = p (t) (t EL), Q (t) = u2 (t) x-2 (t) (3.7) 

In El23 a treatment has been given of the nonlinear boandsry value 

problen of the Riemann type 

@+@)I" = G(~)~-(~~ + g(t) 

where n is an integer > 1, for a simple, smooth. closed contour which 

divides the plane into an interior and an exterior region. In this nrob- 
lea the index of the function G(t) plays just as important a role as in 
the linear case, The nonlinear character of the problem is made evident 
by the fact that the constant obtained with the solution must satisfy 
the condition of absence of branch points in the solution. A particular 
solution of a problem of this type ~8s considered in the earlier work 

E131. We now note that when n < 0 the index of G(t) ceases to play an 
important role in questions of solubility, and what is determined is the 
inner nature of the function Q(Z) - the number of its zeros in the in- 
terior or exterior region. The problem (3.7) can be reduced to a linear 
Riemann boundary value problem for an analytic function, generally speak- 
ing, hsving a logarithmic singularity, 

Note. The value of the function C(t) on L has been taken equal to 
unity in (3.2) only for definiteness. In concrete problems it is more 

convenient to define C(t) on L in a continuous manner so that the abso- 
lute value of the index K will be as small as possible. 

3. We consider the problem (3.7) for a simply connected region bounded 

by a simple smooth closed curve. We assume from the beginning that P(t) 

satisfies the Gel'der condition and nowhere vanishes on the contour L, 



An elastic-plastic probien 1047 

which separates the interior i?” and the exterior region D-, ‘Ihe index of 
P(t) is clearly equal to the difference between the number of zeros of 
the functions UJ+(.Z) and O-(z) in their regions of definition, 0’ and D-. 

We consider the two functions O+(z) and a-(z) defined by the ex- 
pressions 

W(z) =Ml(z)er+(z), O>-(z) = ~*c-~-(~), r(z) = &\ln-#$&- 
L 

CW 

where H,(z) and Hz(z) are arbitrary and, in general, nonanalytic func- 
tions which are extended continuously onto the contour L so that M,+(t) = 
M,-(t), M,+(t) = M,-(t). It is assumed that the integral on the contour 

L has a definite meaning, and for this the formula of ,Sokhotskii has been 
applied. ‘Ibe formulas (3.8) give a certain solution of the functional 
equation (3.7) for simply connected regions in the class of nonanalytic 
functions. Not studying the question of the degree of generality of this 
solution, we note, however, that, for some more general assumptions, it 
is easy to prove the uniqueness of the representation (3.8) in the class 
of analytic functions having isolated singularities. By narrowing the 
class of admissible functions M,(t) and M,(z) it is possible to deter- 
mine all the required analytic solutions of the boundary value problem 
(3.7) for simply connected regions. 

Let the analytic functions Q+(t) and Q-(z) have zero order everywhere 
in the regions of their definition, and let the index of the function 

P(t) be equal to zero. ‘Ihen in the general solution (3.8) it is obvious 
that it is necessary to take 

MI (4 = c, 

where C is an arbitrary constant. If 

prescribed at infinity, the solution 

MS ,(z> = 1 (3.9) 

the value of the function CD-(z) is 

becomes unique. 

Let the function Q+(r) have m zeros at the points z = ai of the region 

D’, and let the function a-(z) have n zeros at the points z = bi of the 
region 6, whereby m - n = K, where K = Ind g(t). For definiteness, the 
coordinate origin will be taken to lie in the region IIt. ‘Ihen the solu- 
tion of the problem (3.7) can be determined up to an arbitrary multi- 
plicative factor by means of Formula (3.8) in which it is clearly 
necessary to put 

( 3 M, (2) = z” * (3.10) 
i=l izl 
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If the functions (D’(z) and Q-(z) are not subject to the additional 

requirements concerning the number and location of the zeros, as was done 

here, then the boundary value problem (3.7) will have an infinite number 

of solutions determined by Formulas (3.10) for the arbitrary numbers>ers 

ai> bi, m, n, such that ai E !I+, bi E D-, m-n=K. 

In this matter there is a most essential difference of the boundary 

value problem (3.7) from the linear Siemann boundary value problem L9,lOI. 

Let the coefficient p(t) h ave a zero or pole of integral order or let 

it have a finite number of discontinuities of the first kind. It is con- 

venient to introduce the canonical function of the problem (3.71, which 

can be defined as the sectionally holomorphic function, which satisfies 

the condition (3.7) and has zero order everywhere in the finite part of 

the plane and order - K at infinity. The canonical function X,(z) of the 

problem (3.7) can be found from the formulas 

x’,+ (2) =_: er+ WI x0- (2) = pe- r- (2) (3.11) 

where r(z) can be determined from Formula (3.5) with ?i,(-r) = TV. $‘. 

With the aid of the X,,(z), the cases when C;(t) has a zero or pole of in- 

tegral order or has discontinuities of the first kind, can be studied in 

exactly the same way as that applied in the linear Diemann problem [9,101. 

In particular, the discontinuities of the first kind can be removed by 

the introduction of auxiliary potential functions. 

Note. The problem (3.7) for a multiply connected region bounded by a 

closed contour does not represent any essential features in comparison 

with the case of the simply connected region, 

4. We consider the problem (3.7) for an open contour. To begin with, 

suppose that on an open curve L, consisting of n arcs with end points 

ak and b,, that the function p(t) satisfies almost everywhere the Gel’der 

condition and that it does not vanish on a convergent sequence of points. 

We consider the function at(z) defined by the expression 

a, (2) = N (2) er (2)) 
sn (2) - 

l‘(z) = 2ni _. 1nS . ______-- 
ic 

dt 
+ A., (2) 1 

I, 
.YL (5) xn+ (1) (z - z) 

(3.12) 

Here the function X,(Z) is analytic outside the cut t, and also 

X,(z) = z” + o(zn) when z - m; N(z) and N,(z) are arbitrary nonanalytic 

functions, extended continuously onto the contour in such a way that 
N,+(t) = NIV(t) ; @( tf = itrf t) = N(t); N(t) satisfies the Gl’der 
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condition almost everywhere on L. Besides, we will assume for simplicity 

that p(-r)/N*(~) is bounded and does not vanish at the ends of the cuts, 

and that N,(z) cannot become infinite with order greater than l/Z. 

Formulas (3.12) give the most general solution of the functional 

Equation (3.7) for an open contour L in the class of nonanalytic func- 

tions bounded at the end points of the cuts ak and b,. 

It can be proved that, in general, the solution of the boundary value 

problem (3.7)) at least in the class of analytic functions having only 

isolated singularities, will have, at the end points of the cuts ah, bk, 
either a nonintegrable essential singularity or will be bounded, so that 

from the requirement of integrability of the solution at the ends of the 

cuts ah, b,-it follows that it 

end points. 

Zy restricting the class of 

possible- to obtain from (3.12) 

are bounded at the ends of’ the 

for an open contour. 

is bounded in the neighborhood of these 

admissible functions N(z) and N,(z), it is 

all the required analytic solutions, which 

cuts, of the boundary value problem (3.7) 

Let the analytic solution of the problem (3.7) have everywhere zero 

order. In this case, in Formula (3.12) it is necessary to put 

A: (2) = 1, N, (2) = 0 (3.13) 

Yoreover, the following (n - 1) conditions must be satisfied 

p df In P W dz = o 

\ i, xn+ (‘) 
(k=O, 1,. . (n-2) (3.14) 

Let the analytic solution of the problem (3.7) have m zeros at the 

points ci;. i = 1, . . . . m (sane or all the ci may coincide). We will 

assume for definiteness that the point z = 0 lies on the contour L. In 

the general solution (3.12) for an open contour, it is clear that it is 

necessary to put 

N.(z) = i-mij[ (2 - Ci), N, (2) = 0 (3.15) 
i-_L 

Moreover, the following (n - 1) conditions must be satisfied 

* 

\ pn+ CT) Lln [P(~)~~~(~~(~-~~-)-L]~~=O (=O, 1, . .,n-2) (3.16) 

Making use of the formula which describes the behavior of a Cauchy 

integral in the neighborhood of the points on the contour, where its 



1050 G.P. Ch erepanov 

density has a logarithmic singularity ([lo] , p. 72)) it is easy to find 
that the solution of the problem (3.7), given by Formulas (3.12), 
(3.15) and (3.16)) is bounded in the vicinity of the point z = 0. ‘Ihus, 
in analogy with the case of the closed contour, for the complete deter- 
mination of the problem it is necessary, in general, to prescribe the 
number and location of the zeros of the required solution; otherwise if 
they are not prescribed the number of solutions is infinite and the solu- 
tions are determined by Formulas (3.12), (3.15)) (3.16) with arbi- 
trary m, ci. For a prescribed number of zeros m the solution can be de- 
termined with an accuracy up to m arbitrary constants. 

Let the function p(t) have a discontinuity of first order in the point 
z= t 1. We assume that the function N,(Z) in the form (3.12) is hounded 

in the vicinity of the point z = tl, and the function N( Z) is bounded and 

Fig. 2. 

does not vanish in this point. Then when 

z- t l by Formula (3.12) 

-5 In X 

@ (z) = (2 - tJrrl ,* Go(z), 
P (h - 0) 

x = P (h + 0) 
(3.17) 

where G,(Z) is a function bounded when 

z= t 1. We will choose the argument x in re- 

lation to the given class of the solution 

in the point of discontinuity z = tl. 

Note. Similarly, it is possible to de- 

rive the solution of the nonlinear boundary 

value problem of the type 

where n is an arbitrary integer, for a closed contour, and the solution 

of the problem 

@+(l,]“= G (t) Q--(t) 

for an open contour, does not exist in general when n = 0. When n > 0 

the basic characteristic of the problem is the index G(t), and when n < 0 

it is the number of zeros of the function G(t). In the general case 

difficulties arise in ascertaining the character of the arbitrary complex 

constants which occur in the solution. In connection with the coefficients 

G(t) and g(t) of these problems as well as with the determination of the 

values of the function @(z) on the contour, it is possible to make a 

great amount of generalization analogous to the case of the linear prob- 

lem (see [14,151). 
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4. Ihe elastic-plastic problem for the exterior of a con- 
tour consisting of straight and curved lines in that case 
when the straight segments are free of loading and the seg- 
ments of the curved arcs which are arbitrarily loaded are 
entirely within the plastic zone. 1. Let the curved boundary arc, 

which lies wholly in the plastic region (Fig. 2) be represented in the 
complex z-plane by the equations 

J: = gk (t). y = T]k (t) (k=l, ) m) 

where c,(t), qk(t) are continuous functions. To this same arc there has 
been applied a loading 

z ITI = kZk (t), 1 Tk @)I < 1 

Let A,, B,, Ci be the vertices of the polygon which forms the contour 
of the body; A,, B, are the points of the curved arcs some of which may 
extend to infinity, i = 1, . . . . n. The equations of the straight lines 
free of loading have the form 

y z z an 8j + dj (i=l, . , m$n) 

where ej is the angle between the jth line and the x-axis. The stresses 
in the plastic zones are given by Formulas (2.1) and (2.2); where 

k(t), q(t), v(t) must be replaced by &k(t), qk(t), r,(t). The plastic 
region cannot extend to the straight lines perpendicular to the straight 
sections of the boundary and emanating from the vertices A,, B,. Other- 
wise there would be a curved arc on which f’(z) = const, which is not 
possible: 

On the unknown boundary between the elastic and plastic regions there 
is the condition on the continuity of the stresses (2.4), where 0 is de- 
fined by Formula (2.1), and on the jth straight section of the boundary 
y = x tan ej + dj the condition for the absence of loading 

Ile l(un Oj -- i) f’ (Z)] = 0 (4.1) 

We pass to the parametric plane of the complex variable 5 with the 
aid of the conformal mapping z = ~(5) such that the points Ci, A,, Bk in 
the z-plane are transformed into the points ci, ak, b, on the real axis 
in the c-plane and the elastic region is in the upper half-plane 
Im 3 > 0 (Fig. 2). 

We introduce the notation 

Pj’ [0J (C)l = FEF (j) (4.2) 
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For the determination, From Formulas (4.1) , (2.3), (2.4) and the 
equations of the lines, of the two functions o(c) and F(c) which are 
analytic in the upper half-plane Im 5 ’ > 0, we obtain the boundary con- 
dition 

IF (C)i = 1 on L, Re l(‘tanOj - i) F (c)I = 0 on M (4.3) 

Re IF (5) o (C)l = p (0) on L, Re f(t~oj+i)w (c)I = -dj OII M 

(4.43 

Here L consists of the points of the real axis lying between ak and 
b, (k = 1, 2, ‘.., m), and M consists of the remaining points on the 
real axis; p(0) = q[t(e)] sin 8 + Ejk[t(e)] cos 8 on the segment (ak, bk); 
and the function t(8) is defined by the relation 8 = a(t) - P(t) (see 
(2.1) to (2.2)). 

‘Ihe boundary value (4.3) is related to the type of problem treated in 
Section 3, since the function F(c) is determined independently of o(i). 
After finding the function F(c) and substituting it into the boundary 
condition (4.4) for the determination of a(j), we obtain a thoroughly 
studied Hilbert problem for the upper half-plane [9,10] (we note that 
8 = - arg F(c) on the basis of Formula (2.4)). 

The elastic problem under the condition of antiplanar deformation Is 
analogous to a two-dimensional problem in hydrodynamics IS]: in this the 
displacement D corresponds to the velocity potential, the stress vector 
T corresponds to the velocity vector. The present case with the absence 
of dislocations corresponds in the hydrodynamic analogy to irrotational 
streamline flow. This analogy makes possible visual determination of the 
number and order of zeros of the function F(S), since those points where 
F(c) vanishes are critical points of the flow. For example, when the con- 
tour of the body is free of loading and there is a constant stress at in- 

finity, the function F(g) has two zeros lying in M on the real axis. Tn 
general, their coordinates are not known beforehand and are to be deter- 
mined from the solution of the problem (4.4). as well as the constants 

ak, bk> ci (apart from three of these, which can be arbitrarily 

prescribed). The stated solution is valid also for the case when the 
body occupies the interior of a contour which consists of segments of 

straight lines and curves and when the straight segments are free of! 
loading and the arbitrarily loaded segments of the curved arcs lie wholly 
within the plastic zone. For this it is essential to bear in mind the 
conditions, analogous to (2. ll), which were imposed on the curved part of 
the boundary, and the character of the loading, as Well as the note re- 
lating to the path of loading (Section 2). 

It is curious, that the elastic problem cannot be expressed in quadra- 

tures, so that the elastic-plastic problem turns out. in principle, t0 
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be simpler than the elastic one. We point out that Galin treated the 
torsion of a bar of polygonal cross-section and the solution of the prob- 
lem was reduced to the solution of a Fuchs-type differential equation 
[161. Problems in the theory of torsion prove to be more complicated than 
those of antiplanar deformation because the right-hand side of the re- 
presentation (1.7) contains the additional term pioz, where w is the 
angle of twist per unit length of the bar. 

2. In spite of the fact that, in principle, the solution of the above 
problem has been obtained in quadratures, the actual performance of the 
integrations meets with great difficulty. Therefore there is great 
interest in treating particular problems by simpler methods. A signifi- 
cant simplification is introduced if the hodograph plane (2.5) is used 
as the parametric g-plane, in those cases when the boundary of the 
elastic region in the z-plane is connected by a one-to-one relation with 
the known boundary in the hodograph plane. This occurs, for example, in 
the elastic-plastic problem for a half-plane with a notch, the walls of 
which are plane and the bottom arbitrarily loaded and completely con- 
tained in the plastic zone. 

W’e consider in more detail the elastic-plastic problem for a half- 
plane with a straight crack 1 extending from the boundary of the half- 
plane. The surface of the crack and the boundary of the half-plane are 
free of stress, and a shear stress T, acts at infinity. On the plane 

5 = (u/‘k)f’(z) th e elastic region is mapped into the unit semi-circle 
with the cut by the line T = r&k. The resulting boundary value problem 
is easily solved with the aid of a double analytic continuation through 

the diameter of the circle and the arc of the circumference. The solution 

for all j, except 5 = 0, is 

z = 2 + 215 (1 - 52) 5 (tx - 2) 1/(v” - ta) (t-2 - t”) & 

n-X (5) s (t” + La) (1 + r2 57 

x (5) = J& + 22) (5” -t T-g 

(4.5) 

where X(c) = c2 f O(1) when 5 - m. 

The integral in the form (4.5) can be expressed in terms of elliptic 

integrals of the first, second and third kind. However, the expressions 

obtained are unwieldy and not effective for numerical calculations. What 

is &ore effective is the asymptotic expansion of the function z(j) in 

terms of the dimensionless parameter T = -r,Jk, which is assumed to be 

SITEAll. 

We quote a part of the asymptotic series 
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Here \1(1 + z*)= z + O(Z-~) as z - a, and the expansion (4.6) is valid 

for all (I except 5 = 0, when T = -r,/k is small (practically up to 

values T * 0.9 for not too small or large 5). In the limiting case 

703 = k, Formula (4.5) gives 

(4.7) 

wherein tan -lo = 0. 

We,will now determine the boundary of the plastic region. Since 

j = e'p it is sufficient to use terms up to the fifth order in Formula 

(4.6). On the basis of (4.6) and (4.7) we obtain the equation of the con- 

tour of the plastic zone in the following form: 

when T = 1 

(4.9) 

We note the simple formula for the distance x* of the point of inter- 

section of the contour of the plastic region with the n-axis from the 

coordinate origin; which is obtained from fG.Rf when cp = n/2 

(4.10) 
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Figure 3 shows the elastic-plastic boundaries, calculated with 
Formulas (4.9) and (4.101, for values of the loading parameter T = y,,/k 
equal to 0.2, 0.5, 0.8, 1.0. 

In the works [2,171 the solution of 

the elastic-plastic problem for a crack 
with small -r << 1 was found and applied 
to the problem of the stability of a 
crack in shear. 

3. &‘e quote further the solution of 

the elastic-plastic problem for a body 
contained in the wedge 8, > arg z > - Bo, 
where TT > 6, > 0. On the sides of the 
wedge there is a constant prescribed 
displacement such that w = 1a when 

Fig. 3. 

arg z = 8, and w = - h when are; z = - BOG ‘Ihe solution appears in the 

following way: 

in the elastic region 

in the plastic region 

w = (h I 6,) arg 2, s = k&+a=g 2 (4.11) 

The boundary between the elastic and plastic regions is lzl = &/e,k. 

In conclusion we note that the solution of the elastic-plastic prob- 
lem for the boundary of a body consisting of straight lines and curves 
in that case when the straight segments are free of loading and the seg- 
ments of the curves which are loaded lie wholly in the plastic zone can 
be carried over with inessential modifications to the solution of the 
analogous problem, if the existence of concentrated forces is allowed in 
the interior of the elastic region or on the straight-line boundaries of 
the body. 

The author is indebted to L.Ia. Semenov and I.N. Ralashov for assist- 
ance during the formulation of the problem. 
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